Handout: Topics from $\$ 1.3-\$ 1.5$

1. New functions from old

Problem 1. Visually, if you start with the graph of $y=\sin (x)$ and shift it to the left by $\pi / 2$, you get the graph of $y=\cos (x)$. Express this relationship algebraically.
Problem 2. Let $f(x)=x^{2}+1, g(x)=\tan (x)$, and $h(x)=x-\pi / 2$.
(1) Compute $(h \circ f)(\pi)$ and $(f \circ h)(\pi)$. Are they the same?
(2) Compute $(f \circ f \circ f \circ f)(0)$.
(3) Find $f \circ g \circ h$ and simplify as much as possible.

Problem 3. Suppose the function f has domain $[0,3]$ and range $[3,7]$ while the function g has domain $[3,7]$ and range $[1,2]$. Can you determine the domain and range of $g \circ f$, or is there not enough information? How about $f \circ g$?

What if (keeping everything else the same) you were instead told that the range of g is $[0,4]$?

2. Exponential functions

Problem 4. Compute $2^{\left(2^{2}\right)}$ and $\left(2^{2}\right)^{2}$. Are they the same?
Problem 5. Answer the same question for $3^{\left(3^{3}\right)}$ and $\left(3^{3}\right)^{3}$. Although this time you may want to use a calculator-one of these expressions is quite large.

Remark. By convention, an expression of the form $a^{b^{c}}$ without any parentheses means $a^{\left(b^{c}\right)}$.
Problem 6. Let a and b be positive constants, neither of which is equal to 1 . Describe precisely what visual transformation(s) must be applied to the graph of $y=a^{x}$ to obtain the graph of $y=b^{x}$. (Do you stretch? squeeze? shift? reflect? and in what direction? by what factor or amount?)

Problem 7. In a laboratory experiment, a radioactive sample is allowed to decay. The amount left after a duration t has elapsed is given by the equation $f(t)=A b^{t}$. At time $t=2$, there are 100 units of the sample left. At time $t=3$, there are only 25 units. What are A and b ?

Now, instead of writing $f(t)=A b^{t}$, express the same function in the form

$$
f(t)=C \cdot\left(\frac{1}{2}\right)^{t / \lambda}
$$

What are C and λ, and what is their physical significance?

3. Inverse functions

Problem 8. For each of the following functions, determine its domain, range, and whether it is one-to-one. If it is indeed one-to-one, compute its inverse. Graph the function, and its inverse if applicable.
(1) $f(x)=x^{3}+2$
(2) $f(x)=5 / x$
(3) $f(x)=5 / x^{2}$
(4) $f(x)=x^{2}-2 x+13$ (Hint: to compute the range, try rewriting the function as $f(x)=a(x-b)^{2}+c$. First find a, then find b, and finally find c. This technique is known to some as "completing the square.")

Problem 9. Compute $\sin \left(\tan ^{-1}(12 / 5)\right)$.
Problem 10. Evaluate the product

$$
\left(\log _{2} 3\right)\left(\log _{3} 4\right)\left(\log _{4} 5\right)\left(\log _{5} 6\right) \cdots\left(\log _{30} 31\right)\left(\log _{31} 32\right)
$$

