Handout: Topics from \$1.3-\$1.5

Discussions 201, 203 // 2018-09-04

1. New functions from old

Problem 1. Visually, if you start with the graph of y = sin(x) and shift it to the left by $\pi/2$, you get the graph of y = cos(x). Express this relationship algebraically.

Problem 2. Let $f(x) = x^2 + 1$, $g(x) = \tan(x)$, and $h(x) = x - \pi/2$.

- (1) Compute $(h \circ f)(\pi)$ and $(f \circ h)(\pi)$. Are they the same?
- (2) Compute $(f \circ f \circ f \circ f)(0)$.
- (3) Find $f \circ g \circ h$ and simplify as much as possible.

Problem 3. Suppose the function *f* has domain [0,3] and range [3,7] while the function *g* has domain [3,7] and range [1,2]. Can you determine the domain and range of $g \circ f$, or is there not enough information? How about $f \circ g$?

What if (keeping everything else the same) you were instead told that the range of g is [0, 4]?

2. Exponential functions

Problem 4. Compute $2^{(2^2)}$ and $(2^2)^2$. Are they the same?

Problem 5. Answer the same question for $3^{(3^3)}$ and $(3^3)^3$. Although this time you may want to use a calculator—one of these expressions is quite large.

Remark. By convention, an expression of the form a^{b^c} without any parentheses means $a^{(b^c)}$.

Problem 6. Let *a* and *b* be positive constants, neither of which is equal to 1. Describe precisely what visual transformation(s) must be applied to the graph of $y = a^x$ to obtain the graph of $y = b^x$. (Do you stretch? squeeze? shift? reflect? and in what direction? by what factor or amount?)

Problem 7. In a laboratory experiment, a radioactive sample is allowed to decay. The amount left after a duration *t* has elapsed is given by the equation $f(t) = Ab^t$. At time t = 2, there are 100 units of the sample left. At time t = 3, there are only 25 units. What are *A* and *b*?

Now, instead of writing $f(t) = Ab^t$, express the same function in the form

$$f(t) = C \cdot \left(\frac{1}{2}\right)^{t/\lambda}.$$

What are *C* and λ , and what is their physical significance?

3. Inverse functions

Problem 8. For each of the following functions, determine its domain, range, and whether it is one-to-one. If it is indeed one-to-one, compute its inverse. Graph the function, and its inverse if applicable.

- (1) $f(x) = x^3 + 2$
- (2) f(x) = 5/x
- (3) $f(x) = 5/x^2$
- (4) $f(x) = x^2 2x + 13$ (Hint: to compute the range, try rewriting the function as $f(x) = a(x b)^2 + c$. First find *a*, then find *b*, and finally find *c*. This technique is known to some as "completing the square.")

Problem 9. Compute $sin(tan^{-1}(12/5))$.

Problem 10. Evaluate the product

$$(\log_2 3)(\log_3 4)(\log_4 5)(\log_5 6)\cdots(\log_{30} 31)(\log_{31} 32)$$